UNIVERSITY OF COPENHAGEN
DEPARTMENT OF ECONOMICS
2nd year of study. 2012 W-2MA rx
WRITTEN EXAM. DYNAMIC MODELS
Thursday, February 23, 2012

SOLUTIONS

Problem 1. We consider the 3×3 matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 1
\end{array}\right)
$$

and the vectorial differential equations
(Δ)

$$
\frac{d \mathbf{z}}{d t}=A \mathbf{z}
$$

and
(Ξ

$$
\frac{d \mathbf{z}}{d t}=A \mathbf{z}+\left(\begin{array}{c}
4 \\
-4 \\
8
\end{array}\right)
$$

(1) Show that the matrix A is non-singular, i. e. A is invertible.

Solution. We find that $\operatorname{det} A=1-1-4=-4$. Hence the matrix A is non-singular.
(2) Determine the inverse matrix A^{-1} of A.

Solution. We reduce the bloc matrix $(A \mid I)$ to the echelon matrix $\left(I \mid A^{-1}\right)$. Then we find that

$$
A^{-1}=\left(\begin{array}{ccc}
\frac{3}{4} & -\frac{1}{2} & \frac{1}{4} \\
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & -\frac{1}{4}
\end{array}\right) .
$$

(3) Find the eigenvalues of the matrix A.

Solution. The characteristic polynomial $P: \mathbf{R} \rightarrow \mathbf{R}$ of the matrix A is given by

$$
\begin{gathered}
\forall t \in \mathbf{R}: P(t)=\operatorname{det}(A-t I)=\operatorname{det}\left(\begin{array}{ccc}
1-t & 0 & 1 \\
0 & 1-t & 2 \\
1 & 2 & 1-t
\end{array}\right)= \\
(1-t)^{3}-(1-t)-4(1-t)=(1-t)\left((1-t)^{2}-5\right)=(1-t)\left(t^{2}-2 t-4\right) .
\end{gathered}
$$

The characteristic roots of P, and hence the eigenvalues of A, are

$$
t_{1}=1, t_{2}=1+\sqrt{5} \text { and } t_{3}=1-\sqrt{5}
$$

(4) Find the eigenspaces of the matrix A.

Solution. We find that

$$
\begin{gathered}
E(1)=N(A-I)=\operatorname{span}\left\{\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)\right\} \\
E(1+\sqrt{5})=N(A-(1+\sqrt{5}) I)=\operatorname{span}\left\{\left(\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} \\
1
\end{array}\right)\right\},
\end{gathered}
$$

and

$$
E(1-\sqrt{5})=N(A-(1-\sqrt{5}) I)=\operatorname{span}\left\{\left(\begin{array}{c}
-\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} \\
1
\end{array}\right)\right\} .
$$

(5) Determine the general solution of the vectorial differential equation (Δ).

Solution. We easily find that

$$
\mathbf{z}(t)=c_{1} e^{t}\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)+c_{2} e^{(1+\sqrt{5}) t}\left(\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} \\
1
\end{array}\right)+c_{3} e^{(1-\sqrt{5}) t}\left(\begin{array}{c}
-\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} \\
1
\end{array}\right)
$$

where $c_{1}, c_{2}, c_{3} \in \mathbf{R}$.
(6) Determine the general solution of the vectorial differential equation (Ξ).

Solution. We know that

$$
\mathbf{k}=-A^{-1}\left(\begin{array}{c}
4 \\
-4 \\
8
\end{array}\right)=-\left(\begin{array}{ccc}
\frac{3}{4} & -\frac{1}{2} & \frac{1}{4} \\
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & -\frac{1}{4}
\end{array}\right)\left(\begin{array}{c}
4 \\
-4 \\
8
\end{array}\right)=\left(\begin{array}{c}
-7 \\
-2 \\
3
\end{array}\right)
$$

is a constant solution of the vectorial differential equation (Ξ). Then we find that the general solution of (Ξ) is

$$
\mathbf{z}(t)=c_{1} e^{t}\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)+c_{2} e^{(1+\sqrt{5}) t}\left(\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} \\
1
\end{array}\right)+c_{3} e^{(1-\sqrt{5}) t}\left(\begin{array}{c}
-\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} \\
1
\end{array}\right)+\left(\begin{array}{c}
-7 \\
-2 \\
3
\end{array}\right)
$$

where $c_{1}, c_{2}, c_{3} \in \mathbf{R}$.
(7) For every $v \in \mathbf{R}$ we consider the 3×3 matrix

$$
B(v)=\left(\begin{array}{lll}
v & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & v
\end{array}\right)
$$

and the vectorial differential equation

$$
\begin{equation*}
\frac{d \mathbf{z}}{d t}=B(v) \mathbf{z} . \tag{§}
\end{equation*}
$$

Show that the vectorial differential equation is not globally asymptotically stable for any value of $v \in \mathbf{R}$.

Solution. We notice that the matrix $B(v)$ is symmetric for any $v \in$ R. Furthermore we know that the vectorial differential equation (§) is globally asymptotically stable if and only if $B(v)$ is negative definite.
The leading principal minors of $B(v)$ are $D_{1}=v, D_{2}=v$, and $D_{3}=$ $\operatorname{det}(B(v))=v^{2}-4 v-1$. If $B(v)$ were negative definite we had that $D_{1}<0$ and $D_{2}>0$. But this is impossible.

Problem 2. For any $r \geq 1$ we consider the set

$$
K(r)=\left\{z \in \mathbf{C}: \frac{1}{r} \leq|z| \leq r\right\}
$$

(1) Show that, for any $r \geq 1$, the set $K(r)$ is compact.

Solution. It is obvious that the set $K(r)$, for any $r \geq 1$, is both closed and bounded, hence it is compact.
(2) Find, for any $r \geq 1$, the interior $(K(r))^{o}$ of the set $K(r)$.

Solution. If $r=1$ we have that

$$
K(1)=\mathbf{T}=\{z \in \mathbf{C}:|z|=1\}
$$

and we notice, that $(K(1))^{o}=\emptyset$. If $r>1$ we easily find that

$$
(K(r))^{o}=\left\{z \in \mathbf{C}: \frac{1}{r}<|z|<r\right\} .
$$

(3) Determine the sets

$$
K=\bigcap_{r>1} K(r) \text { and } K_{\infty}=\bigcup_{r>1} K(r) .
$$

Solution. We find that

$$
K=\bigcap_{r>1} K(r)=K(1)=\{z \in \mathbf{C}:|z|=1\}
$$

and

$$
K_{\infty}=\bigcup_{r>1} K(r)=\mathbf{C} \backslash\{0\} .
$$

(4) Show that the set K_{∞} is open.

Solution. The singleton $\{0\}$ is closed. Hence $K_{\infty}=\mathbf{C} \backslash\{0\}$ is open.
(5) Let $\left(\zeta_{k}\right)$ be a sequence of points such that

$$
\forall k \in \mathbf{N}: \zeta_{k} \in K\left(1+\frac{1}{k}\right) .
$$

Show that the sequence $\left(\zeta_{k}\right)$ has a convergent subsequence $\left(\zeta_{k_{p}}\right)$.
Let ζ_{0} be the limit point of the convergent subsequence $\left(\zeta_{k_{p}}\right)$. Show that $\left|\zeta_{0}\right|=1$.

Solution. Let us choose any $k_{0} \in \mathbf{N}$. Then we have that

$$
\forall k \in \mathbf{N}: k \geq k_{0} \Rightarrow \zeta_{k} \in K\left(1+\frac{1}{k_{0}}\right)
$$

and since $K\left(1+\frac{1}{k_{0}}\right)$ is compact the sequence $\left(\zeta_{k}\right)$ has a convergent subsequence $\left(\zeta_{k_{p}}\right)$. Furthermore it is clear that the limit point ζ_{0} has the modulus $\left|\zeta_{0}\right|=1$.

Problem 3. We consider the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ given by

$$
\forall(x, y) \in \mathbf{R}^{2}: f(x, y)=2 x^{2}+x y^{2}
$$

and the correspondence $F: \mathbf{R} \rightarrow \mathbf{R}$ defined by the rule

$$
F(x)=\left\{\begin{array}{ll}
{[-1, x],} & \text { if } x \geq 0 \\
{[-2,0],} & \text { if } x<0
\end{array} .\right.
$$

(1) Show that the correspondence F does not have the closed graph property.

Solution. Consider a convergent sequence $\left(x_{k}\right) \rightarrow 0$, where $x_{k}<0$ for any $k \in \mathbf{N}$. Furthermore consider the constant sequence $\left(y_{k}\right)$, where $y_{k}=-2$ for any $k \in \mathbf{N}$. Then $\left(y_{k}\right) \rightarrow-2$, but $-2 \notin F(0)$. This proves the assertion.
(2) Show that the maximum value function $V: \mathbf{R} \rightarrow \mathbf{R}$ given by

$$
\forall x \in \mathbf{R}: V(x)=\max \{f(x, y): y \in F(x)\}
$$

is well defined and find an algebraical rule of V.
Solution. The maximum value function V is well defined because all the sets $F(x)$ are compact. Furthermore, we find that

$$
\begin{gathered}
V(x)=\max \left\{2 x^{2}+x y^{2}: y \in F(x)\right\}= \\
\left\{\begin{array}{ll}
2 x^{2}+x^{3}, & \text { if } x>1 \text { for } y=x \\
3, & \text { if } x=1 \text { for } y=-1 \text { and } y=1 \\
2 x^{2}+x, & \text { if } 0<x<1 \text { for } y=-1 \\
0, & \text { if } x=0 \text { for } y \in[-1,0] \\
2 x^{2}, & \text { if } x<0 \text { for } y=0
\end{array} .\right.
\end{gathered}
$$

(3) Show that the maximum value function V is continuous.

Solution. This is trivial.
(4) Determine the maximum value correspondence $Y^{*}: \mathbf{R} \rightarrow \mathbf{R}$ given by

$$
\forall x \in \mathbf{R}: Y^{*}(x)=\{y \in F(x): V(x)=f(x, y)\} .
$$

Solution. We notice that

$$
Y^{*}(x)=\left\{\begin{array}{ll}
\{x\}, & \text { if } x>1 \\
\{-1,1\}, & \text { if } x=1 \\
\{-1\}, & \text { if } 0<x<1 . \\
{[-1,0],} & \text { if } x=0 \\
\{0\}, & \text { if } x<0
\end{array} .\right.
$$

Problem 4. We consider the function $F: \mathbf{R}^{3} \rightarrow \mathbf{R}$ given by the rule

$$
\forall(t, x, y) \in \mathbf{R}^{3}: F(t, x, y)=\left(x+y^{2}\right) e^{-t} .
$$

Furthermore we consider the functional

$$
I(x)=\int_{0}^{1}\left(x+\left(\frac{d x}{d t}\right)^{2}\right) e^{-t} d t
$$

(1) Show that for every $t \in \mathbf{R}$ the function $F=F(t, x, y)$ is convex in $(x, y) \in \mathbf{R}^{2}$.

Solution. We find that

$$
\frac{\partial F}{\partial x}=e^{-t} \text { and } \frac{\partial F}{\partial y}=2 y e^{-t}
$$

and that the Hessian matrix of the function F is

$$
F^{\prime \prime}=\left(\begin{array}{cc}
0 & 0 \\
0 & 2 e^{-t}
\end{array}\right) .
$$

This matrix is positive semidefinite and hence the function F is a convex function of $(x, y) \in \mathbf{R}^{2}$.
(2) Solve the variational problem: Determine the minimum function $x^{*}=$ $x^{*}(t)$ of the functional $I(x)$ subject to the conditions $x^{*}(0)=1$ and $x^{*}(1)=-\frac{1}{2}$.

Solution. Since the function F is a convex function of $(x, y) \in \mathbf{R}^{2}$ we know that the given variational problem is a minimum problem.

The Euler differential equation is:

$$
\begin{gathered}
\frac{\partial F}{\partial x}-\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{x}}\right)=0 \Leftrightarrow e^{-t}-2 \frac{d^{2} x}{d t^{2}} e^{-t}+2 \frac{d x}{d t} e^{-t}=0 \Leftrightarrow \\
2 \frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}=1 \Leftrightarrow \frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}=\frac{1}{2}
\end{gathered}
$$

We notice that the Euler differential equation is an inhomogeneous differential equation of the second order. The characteristic polynomial is given by $P(r)=r^{2}-r$, and the characteristic roots are $r_{1}=0$ and $r_{2}=1$. Hence the general solution of the corresponding homogeneous differential equation is

$$
x=c_{1}+c_{2} e^{t},
$$

where $c_{1}, c_{2} \in \mathbf{R}$.
A special solution $\hat{x}=\hat{x}(t)$ of the inhomogeneous differential equation is of the form $\hat{x}(t)=A t$. We find that $\hat{x}^{\prime}(t)=A$ and that $\hat{x}^{\prime \prime}(t)=0$. This gives us that $A=-\frac{1}{2}$.
Now, the general solution of the Euler differential equation is

$$
x=c_{1}+c_{2} e^{t}-\frac{1}{2} t,
$$

where $c_{1}, c_{2} \in \mathbf{R}$.

From the two given conditions

$$
x^{*}(0)=1 \text { and } x^{*}(1)=-\frac{1}{2}
$$

we find that $c_{1}=\frac{e}{e-1}$ and that $c_{2}=-\frac{1}{e-1}$.
Then we have that

$$
x^{*}=x^{*}(t)=\frac{e}{e-1}-\frac{e^{t}}{e-1}-\frac{1}{2} t .
$$

