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SOLUTIONS

Problem 1. We consider the 3 x 3 matrix

1 01
A=101 2
1 21

and the vectorial differential equations
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(Z) dzAz—l—(—él).
dt 3

(1) Show that the matrix A is non-singular, i. e. A is invertible.

Solution. We find that det A =1 -1 —4 = —4. Hence the matrix A
is non-singular.

2) Determine the inverse matrix A~! of A.
(

Solution. We reduce the bloc matrix (A|l) to the echelon matrix
(I|A71). Then we find that
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(3)

Find the eigenvalues of the matrix A.

Solution. The characteristic polynomial P : R — R of the matrix A
is given by

1—-t 0 1

VtER:P(t)=det(A—tl)=det| 0 1—t 2
1 2 1-t

(1=t = (1=t)=4(1—t) = (1=t)(1=1)?=5) = (1—)(£* — 2t - 4).

The characteristic roots of P, and hence the eigenvalues of A, are

t1:17t2:1+\/3 and t3:1—\/5

Find the eigenspaces of the matrix A.
Solution. We find that
-2
E(1)=NA-1) :span{ 1 },
0

E(1++V5)=N(A—- (1+V5)I) :span{ é },
1

and
1
?
E(1—+5)=NA-(1-V5)I)= span{ - }
1
Determine the general solution of the vectorial differential equation

(A).

Solution. We easily find that

(1-VB)t
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z(t) = cie’ ( 1 ) + cpe1HVo) + cqe
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where ¢y, co,c3 € R.



(6) Determine the general solution of the vectorial differential equation (=Z).

Solution. We know that

3 1
-1 ! Z1 _% % ) !
4 2 4

is a constant solution of the vectorial differential equation (Z). Then
we find that the general solution of (Z) is
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z(t) =cret | 1 |+ tVor
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where ¢q, ¢, c3 € R.

(7) For every v € R we consider the 3 x 3 matrix

0 1
B(v) = 1 2
2 v

_ O S

and the vectorial differential equation

d
(5) =Bz
Show that the vectorial differential equation is not globally asymptot-
ically stable for any value of v € R.

Solution. We notice that the matrix B(v) is symmetric for any v €
R. Furthermore we know that the vectorial differential equation (§) is
globally asymptotically stable if and only if B(v) is negative definite.

The leading principal minors of B(v) are Dy = v, Dy = v, and D3 =
det(B(v)) = v? — 4v — 1. If B(v) were negative definite we had that
Dy < 0 and Dy > 0. But this is impossible.

Problem 2. For any r > 1 we consider the set

K(r)y={z€C:=<|z| <r}.



(1)

Show that, for any r > 1, the set K(r) is compact.

Solution. It is obvious that the set K (r), for any r > 1, is both closed
and bounded, hence it is compact.

Find, for any r > 1, the interior (K (r))° of the set K(r).

Solution. If »r = 1 we have that
K1)=T={z€C:|z|=1}

and we notice, that (K(1))? = @. If r > 1 we easily find that

(K@) ={z€C: <] <7}

Determine the sets

K={)K(r) and K = |J K(r).

r>1 r>1

Solution. We find that

K=(Kr)=K(1)={z€C:|z|=1}

r>1
and

Ky = |J K(r) = C\ {0}.

r>1

Show that the set K, is open.

Solution. The singleton {0} is closed. Hence K, = C\ {0} is open.

Let (Cx) be a sequence of points such that

Vk:eN:(keK<1+;).

Show that the sequence ((x) has a convergent subsequence ((g, ).

Let (o be the limit point of the convergent subsequence ((x,). Show



Solution. Let us choose any ky € N. Then we have that

1
VhkeN:k>hy=GeK(1+)
ko
and since K (1 + kio) is compact the sequence ((;) has a convergent

subsequence ((x,). Furthermore it is clear that the limit point (, has
the modulus |(y| = 1.

Problem 3. We consider the function f: R?> — R given by

V(z,y) € R*: f(z,y) = 22% + xy”

and the correspondence F': R — R defined by the rule

(1)

Fla) = { [—1,z], ifx>0

[-2,0], ifz<0 "

Show that the correspondence F' does not have the closed graph prop-
erty.

Solution. Consider a convergent sequence (xy) — 0, where x; < 0 for
any k € N. Furthermore consider the constant sequence (yi), where
yr = —2 for any k € N. Then (yx) — —2, but —2 ¢ F(0). This proves
the assertion.

Show that the maximum value function V' : R — R given by
VeeR:V(x)=max{f(z,y):y € F(x)}

is well defined and find an algebraical rule of V.

Solution. The maximum value function V is well defined because all
the sets F'(x) are compact. Furthermore, we find that

V(z) = max{22> + my? 1y € F(2)} =

202+ 2%, ifx>1for y=2z

3, ifr=1"for y=—-1 and y=1
202+, if0<z<1 for y=-1
0, if v =0 for y € [-1,0]

222, ifx <0 for y=0



(3) Show that the maximum value function V' is continuous.
Solution. This is trivial.

(4) Determine the maximum value correspondence Y* : R — R given by

VeeR:Y*(x)={y e F(zx): V(x)= f(z,y)}.

Solution. We notice that

{z}, ifx>1

(~1,1}, ifa=1
Y*(x)=1¢ {-1}, if0<z<1.

[—1,0], ifx=0

{0}, ifx <0

Problem 4. We consider the function ' : R* — R given by the rule
V(t,z,y) € R®: F(t,x,y) = (x +yHe .

Furthermore we consider the functional

(1) Show that for every ¢ € R the function F' = F(t,z,y) is convex in
(v,y) € R

Solution. We find that
t

F
gm =e¢ " and En = 2ye ',

and that the Hessian matrix of the function F' is

” O 0
F (O 26t>'

This matrix is positive semidefinite and hence the function F'is a convex
function of (x,y) € R%



(2) Solve the variational problem: Determine the minimum function z* =
x*(t) of the functional I(z) subject to the conditions z*(0) = 1 and
z*(1) = —3.
Solution. Since the function F is a convex function of (z,y) € R* we
know that the given variational problem is a minimum problem.

The Euler differential equation is:

oF d OF d?x dx
il (el S| Tt et 4ot =
oz dt<ag;~) e at T <
S e e de 1
dt? dt dt? dt 2

We notice that the Euler differential equation is an inhomogeneous
differential equation of the second order. The characteristic polynomial
is given by P(r) = r? — r, and the characteristic roots are r; = 0 and
ro = 1. Hence the general solution of the corresponding homogeneous
differential equation is

T = ¢y + e,

where ¢, € R.

A special solution & = Z(t) of the inhomogeneous differential equation
is of the form #(t) = At. We find that 2'(t) = A and that 2" (¢) = 0.

This gives us that A = —%.
Now, the general solution of the Euler differential equation is

T =1+ et — 3t

where c1,c9 € R.

From the two given conditions

1
z*(0) =1 and z*(1) = )
we find that ¢; = -5 and that ¢, = —ﬁ.
Then we have that
t
1
r=a"(t) = c _°



